Neutral atom arrays provide a versatile platform to implement coherent quantum annealing as an approach to solving hard combinatorial optimization problems. In this work we present and experimentally demonstrate an efficient encoding scheme based on chains of Rydberg-blockaded atoms, which we call quantum wires, to natively embed maximum weighted independent set (MWIS) and quadratic unconstrained binary optimization (QUBO) problems on a neutral atom architecture. This approach successfully identifies the solutions to the original MWIS and QUBO graph instances. Our work expands the operational toolkit of near-term neutral atom arrays, enhancing their potential for scalable quantum optimization. For more details see
arXiv:2503.17115.