Quantum simulations of Hubbard models with ultracold atoms rely on the exceptional control of coherent motion provided by optical lattices. Here we demonstrate enhanced tunability using an optical superlattice in a fermionic quantum gas microscope, evidenced by long-lived coherent double-well oscillations, next-nearest-neighbor quantum walks in a staggered configuration, and correlated quantum walks of two particles initiated through a resonant pair-breaking mechanism. We furthermore demonstrate tunable spin couplings through local offsets and engineer a spin ladder with ferromagnetic and antiferromagnetic couplings along the rungs and legs, respectively. Our Letter underscores the high potential of optical superlattices for engineering, simulating, and detecting strongly correlated many-body quantum states, with direct applications ranging from the study of mixed-dimensional systems to fermionic quantum computing.