We demonstrate a tunable, chip-scale wavelength reference to greatly reduce the complexity and volume of cold-atom sensors. A 1-mm optical path length microfabricated cell provides an atomic wavelength reference, with dynamic frequency control enabled by Zeeman-shifting the atomic transition through the magnetic field generated by the printed-circuit-board coils. The dynamic range of the laser frequency stabilization system is evaluated and used in conjunction with an improved generation of chip-scale cold-atom platforms that traps 4 million 87Rb atoms. The scalability and component consolidation provide a key step forward in the miniaturization of cold-atom sensors.