Confinement-induced resonances in low-dimensional quantum systems

Abstract

We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one-and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists.

Publication
Physical Review Letters